frarch.datasets.transforms.pil_transforms module
frarch.datasets.transforms.pil_transforms module#
- class frarch.datasets.transforms.pil_transforms.PILBrightness(var: float)[source]#
Bases:
object
Randomly dim or enhance brightness of an image.
Randomly dim or enhance brightness of an image given as an input. Given var value, enhance brightness from a 1-var factor to a 1+var factor.
- Parameters
var (float) – float value to get random alpha value from [1-var, 1+var].
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_brightness = PILBrightness() processed_image = random_brightness(image)
- class frarch.datasets.transforms.pil_transforms.PILColorBalance(var: float)[source]#
Bases:
object
Randomly dim or enhance color of an image.
Randomly dim or enhance color of an image given as an input. Given var value, enhance color from a 1-var factor to a 1+var factor.
- Parameters
var (float) – float value to get random alpha value from [1-var, 1+var].
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_color_balance = PILColorBalance() processed_image = random_color_balance(image)
- class frarch.datasets.transforms.pil_transforms.PILContrast(var: float)[source]#
Bases:
object
Randomly dim or enhance contrast of an image.
Randomly dim or enhance contrast of an image given as an input. Given var value, enhance contrast from a 1-var factor to a 1+var factor.
- Parameters
var (float) – float value to get random alpha value from [1-var, 1+var].
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_contrast = PILContrast() processed_image = random_contrast(image)
- class frarch.datasets.transforms.pil_transforms.PILSharpness(var: float)[source]#
Bases:
object
Randomly dim or enhance sharpness of an image.
Randomly dim or enhance sharpness of an image given as an input. Given var value, enhance sharpness from a 1-var factor to a 1+var factor.
- Parameters
var (float) – float value to get random alpha value from [1-var, 1+var].
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_sharpness = PILSharpness() processed_image = random_sharpness(image)
- class frarch.datasets.transforms.pil_transforms.PowerPIL(rotate: bool = True, flip: bool = True, colorbalance: float = 0.4, contrast: float = 0.4, brightness: float = 0.4, sharpness: float = 0.4)[source]#
Bases:
frarch.datasets.transforms.pil_transforms.RandomOrder
Composes several transforms together in random order.
- Parameters
transforms (Iterable[Callable]) – An iterable containing callable objects which take PIL.Image as input and outputs the same object type.
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") powerpil = PowerPIL(True, True, 0.1, 0.1, 0.1, 0.1) processed_image = powerpil(image)
- class frarch.datasets.transforms.pil_transforms.RandomFlip[source]#
Bases:
object
Randomly flips the given PIL.Image.
Probability of 0.25 horizontal flip, 0.25 vertical flip, 0.5 no flip.
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_flip = RandomFlip() processed_image = random_flip(image)
- class frarch.datasets.transforms.pil_transforms.RandomOrder(transforms: Optional[Iterable[Callable]])[source]#
Bases:
object
Composes several transforms together in random order.
- Parameters
transforms (Iterable[Callable]) – An iterable containing callable objects which take PIL.Image as input and outputs the same object type.
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_sharpness = RandomOrder( [ RandomFlip(), RandomRotate(), PILColorBalance(0.1), PILContrast(0.1), PILBrightness(0.1), PILSharpness(0.1), ] ) processed_image = random_sharpness(image)
- class frarch.datasets.transforms.pil_transforms.RandomRotate[source]#
Bases:
object
Randomly rotate the given PIL.Image.
Probability of 1/6 90°, 1/6 180°, 1/6 270°, 1/2 as is.
Example
Simple usage of the class:
image = PIL.Image.open("testimage.jpg") random_rotate = RandomRotate() processed_image = random_rotate(image)