frarch.modules.metrics.base module
frarch.modules.metrics.base module#
- class frarch.modules.metrics.base.AggregationModes(value)[source]#
Bases:
frarch.utils.enums.base.StringEnum
An enumeration.
- MAX = 'max'#
- MEAN = 'mean'#
- MIN = 'min'#
- class frarch.modules.metrics.base.Metric[source]#
Bases:
object
abstract class for Metric objects.
Example
- Simple usage of the Metric class::
- class MyMetric(Metric):
- def _update(self, predictions, truth):
# compute some metric return metric_value
model = MyModel() mymetric = MyMetric() for batch, labels in dataset:
predictions = model(batch) mymetric.update(predictions, labels)
print(mymetric.get_metric(mode=”mean”))
- aggregation_methods = {AggregationModes.MAX: <function Metric.<lambda>>, AggregationModes.MEAN: <function Metric.<lambda>>, AggregationModes.MIN: <function Metric.<lambda>>}#
- get_metric(mode: frarch.modules.metrics.base.AggregationModes = AggregationModes.MEAN) float [source]#
Aggregate all values stored in the metric class.
- Parameters
mode (str, optional) – aggregation type. mean, max or min. Defaults to “mean”.
- Raises
ValueError – aggregation mode not supported
- Returns
aggregated metric.
- Return type