frarch.models.classification.cnn.resnet module
frarch.models.classification.cnn.resnet module#
ResNet definition. Slightly tweaked pytorch implementation.
- Description
ResNet
- Authors
victor badenas (victor.badenas@gmail.com), pytorch.org
- Version
0.1.0
- Created on
21/07/2021 19:00
- class frarch.models.classification.cnn.resnet.ResNet(block: frarch.models.classification.cnn.resnet.ResNetBlock, layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[[...], torch.nn.modules.module.Module]] = None)[source]#
Bases:
torch.nn.modules.module.Module
Residual network architecture model.
- Parameters
block (ResNetBlock) – basic construction block for architecture.
layers (List[int]) – layer configuration. I.e. [2, 2, 2, 2].
num_classes (int)) – output classes. Defaults to 1000.
zero_init_residual (bool) – True to initialize the residual layers with zeros. Default False.
groups (int) – groups for convolutional layers in residual blocks. Defaults to 1.
width_per_group (int) – Width for convolutional residual blocks. Defaults to 64.
replace_stride_with_dilation (Optional[List[bool]]) – Optional list of boolean values to replace stride with dilation. Defaults to None.
norm_layer (Optional[Callable[..., nn.Module]]) – Norm layer. If None, defaults to BatchNorm2d. Defautls to None.
- frarch.models.classification.cnn.resnet.resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNet-101 model.
- frarch.models.classification.cnn.resnet.resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNet-152 model.
- frarch.models.classification.cnn.resnet.resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNet-18 model.
- frarch.models.classification.cnn.resnet.resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNet-34 model.
- frarch.models.classification.cnn.resnet.resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNet-50 model.
- frarch.models.classification.cnn.resnet.resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNeXt-101 32x8d model.
From “Aggregated Residual Transformation for Deep Neural Networks”.
- frarch.models.classification.cnn.resnet.resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
ResNeXt-50 32x4d model.
From “Aggregated Residual Transformation for Deep Neural Networks”.
- frarch.models.classification.cnn.resnet.wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
Wide ResNet-101-2 model.
From “Wide Residual Networks”. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048.
- frarch.models.classification.cnn.resnet.wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) frarch.models.classification.cnn.resnet.ResNet [source]#
Wide ResNet-50-2 model.
From “Wide Residual Networks”. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048.