frarch.models.classification.cnn.vgg module
frarch.models.classification.cnn.vgg module#
VGG definition. Slightly modified pytorch implementation.
- Description
VGG
- Authors
victor badenas (victor.badenas@gmail.com), pytorch.org
- Version
0.1.0
- Created on
21/07/2021 19:00
- class frarch.models.classification.cnn.vgg.VGG(layers_cfg: List[Union[str, int]], batch_norm: bool = True, init_weights: bool = True, pretrained: bool = False)[source]#
Bases:
torch.nn.modules.module.Module
VGG network definition.
From “Very Deep Convolutional Networks for Large-Scale Image Recognition”.
- Parameters
layers_cfg (List[Union[str, int]]) – vgg layer configuration.
batch_norm (bool, optional) – Boolean flag for doing batch normalization. Defaults to True.
init_weights (bool, optional) – Force weight initialization. Defaults to True.
pretrained (bool, optional) – Get pretrained model. Defaults to False.
- frarch.models.classification.cnn.vgg.vgg11(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 11-layer model.
VGG 11-layer model from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg11_bn(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 11-layer with batch normalization model.
VGG 11-layer model with batch normalization from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg13(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 13-layer model.
VGG 13-layer model from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg13_bn(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 13-layer with batch normalization model.
VGG 13-layer model with batch normalization from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg16(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 16-layer model.
VGG 16-layer model from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg16_bn(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 16-layer with batch normalization model.
VGG 16-layer model with batch normalization from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg19(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 19-layer model.
VGG 19-layer model from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
- frarch.models.classification.cnn.vgg.vgg19_bn(pretrained: bool = False, **kwargs: Any) frarch.models.classification.cnn.vgg.VGG [source]#
Create VGG 19-layer with batch normalization model.
VGG 19-layer model with batch normalization from “Very Deep Convolutional Networks for Large-Scale Image Recognition”. The required minimum input size of the model is 32x32.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet